
Singularity Container Documentation
Release 3.0

Admin Docs

Apr 02, 2019

CONTENTS

1 Admin Quick Start 1
1.1 Installation . 1

1.1.1 Install Dependencies . 1
1.1.2 Download and Build the RPM . 1
1.1.3 Setting localstatedir . 2

1.2 Configuration . 2
1.3 Singularity Architecture . 2
1.4 Singularity Security . 2

1.4.1 Security of the Container Runtime . 2
1.4.2 Security of the Container Itself . 3
1.4.3 Administrator Control of Users’ Containers . 3

1.5 Updating Singularity . 3
1.6 Uninstalling Singularity . 4

2 Singularity Configuration Files 5
2.1 singularity.conf . 5

2.1.1 Limiting containers . 5
2.2 cgroups.toml . 6

2.2.1 Examples . 6
2.2.1.1 Limiting memory . 6
2.2.1.2 Limiting CPU . 7
2.2.1.3 Limiting IO . 7

2.3 ecl.toml . 8
2.4 nvliblist.conf . 8
2.5 capability.json . 9
2.6 seccomp-profiles . 9

i

ii

CHAPTER

ONE

ADMIN QUICK START

This document will cover installation and administration points of Singularity on a Linux host. This will also cover an
overview of configuring Singularity, Singularity architecture, and the Singularity security model.

For any additional help or support contact the Sylabs team, or send a email to support@sylabs.io.

1.1 Installation

This section will explain how to install Singularity from an RPM. If you want more information on installation,
including alternate installation procedures and options for other operating systems, see the user guide instalation page.

1.1.1 Install Dependencies

Before we build the RPM, we need to install some dependencies:

$ sudo yum -y update && sudo yum -y install \
wget \
rpm-build \
git \
gcc \
libuuid-devel \
openssl-devel \
libseccomp-devel \
squashfs-tools

1.1.2 Download and Build the RPM

The Singularity tarball for building the RPM is available on the Github release page.

Go and all other build dependencies will be downloaded automatically just to build the RPM, and will then be auto-
matically removed.

$ export VERSION=3.0.2 # this is the singularity version, change as you need

$ wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/
→˓singularity-${VERSION}.tar.gz && \

rpmbuild -tb singularity-${VERSION}.tar.gz && \
sudo rpm --install -vh ~/rpmbuild/RPMS/x86_64/singularity-${VERSION}-1.el7.x86_64.

→˓rpm && \
rm -rf ~/rpmbuild singularity-${VERSION}*.tar.gz

1

https://www.sylabs.io/contact/
mailto:support@sylabs.io
https://www.sylabs.io/guides/3.0/user-guide/installation.html
https://github.com/sylabs/singularity/releases

Singularity Container Documentation, Release 3.0

1.1.3 Setting localstatedir

The local state directories used by singularity at runtime will be placed under the supplied prefix option. This
will cause issues if that directory tree is read-only or if it is shared between several hosts or nodes that might run
singularity simultaneously.

In such cases, you should specify the localstatedir option. This will override the prefix option, instead
placing the local state directories within the path explicitly provided. Ideally this should be within the local filesystem,
specific to only a single host or node.

In the case of a cluster, admins must ensure that the localstatedir exists on all nodes with root:root owner-
ship and 0755 permissions

rpmbuild -tb --define='_localstatedir /mnt' singularity-${VERSION}.tar.gz

1.2 Configuration

There are several ways to configuring Singularity. Head over to the Configuration files section where most of the conf
files and setting of configuration options are discussed.

1.3 Singularity Architecture

The architecture of Singularity allows containers to be executed as if they were native programs or scripts on a host
system.

As a result, integration with schedulers such as Univa Grid Engine, Torque, SLURM, SGE, and many others is as
simple as running any other command. All standard input, output, errors, pipes, IPC, and other communication
pathways used by locally running programs are synchronized with the applications running locally within the container.

1.4 Singularity Security

1.4.1 Security of the Container Runtime

The Singularity security model is unique among container platforms. The bottom line? Untrusted users (those who
don’t have root access and aren’t getting it) can run untrusted containers (those that have not been vetted by admins)
safely. There are a few pieces of the model to consider.

First, Singularity’s design forces a user to have the same UID and GID context inside and outside of the container.
This is accomplished by dynamically writing entries to /etc/passwd and /etc/groups at runtime. This design
makes it trivially easy for a user inside the container to safely read and write data to the host system with correct
ownership, and it’s also a cornerstone of the Singularity security context.

Second, Singularity mounts the container file system with the nosuid flag and executes processes within the container
with the PR_SET_NO_NEW_PRIVS bit set. Combined with the fact that the user is the same inside and outside of
the container, this prevents a user from escalating privileges.

Taken together, this design means your users can run whatever containers they want, and you don’t have to worry
about them damaging your precious system.

2 Chapter 1. Admin Quick Start

Singularity Container Documentation, Release 3.0

1.4.2 Security of the Container Itself

A malicious container may not be able to damage your system, but it could still do harm in the user’s space without
escalating privileges.

Starting in Singularity 3.0, containers may be cryptographically signed when they are built and verified at runtime via
PGP keys. This allows a user to ensure that a container is a bit-for-bit reproduction of the container produced by the
original author before they run it. As long as the user trusts the individual or company that created the container, they
can run the container without worrying.

Key signing and verification is made easy using the Sylabs Keystore infrastructure. Join the party! And get more
information about signing and verifying in the Singularity user guide.

1.4.3 Administrator Control of Users’ Containers

Singularity provides several ways for administrators to control the specific containers that users can run.

• Admins can set directives in the singularity.conf file to limit container access.

– limit container owners: Only allow containers to be used when they are owned by a given user (default
empty)

– limit container groups: Only allow containers to be used when they are owned by a given group (default
empty)

– limit container paths: Only allow containers to be used that are located within an allowed path prefix
(default empty)

– allow container squashfs: Limit usage of image containing squashfs filesystem (default yes)

– allow container extfs: Limit usage of image containing ext3 filesystem (default yes)

– allow container dir: Limit usage of directory image (default yes)

• Admins can also whitelist or blacklist containers through the ECL (Execution Control List) located in ecl.
toml. This method is available in >=3.0:

This file describes execution groups in which SIF (default format since 3.0) images are checked for
authorized loading/execution. The decision is made by validating both the location of the SIF file
and by checking against a list of signing entities.

1.5 Updating Singularity

Updating Singularity is just like installing it, but with the --upgrade flag instead of --install. Make sure you
pick the latest tarball from the Github relese page.

$ export VERSION=3.0.2 # the newest singularity version, change as you need

$ wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/
→˓singularity-${VERSION}.tar.gz && \

rpmbuild -tb singularity-${VERSION}.tar.gz && \
sudo rpm --upgrade -vh ~/rpmbuild/RPMS/x86_64/singularity-${VERSION}-1.el7.x86_64.

→˓rpm && \
rm -rf ~/rpmbuild singularity-${VERSION}*.tar.gz

1.5. Updating Singularity 3

https://cloud.sylabs.io/keystore
https://www.sylabs.io/guides/3.0/user-guide/signNverify.html
https://github.com/sylabs/singularity/releases

Singularity Container Documentation, Release 3.0

1.6 Uninstalling Singularity

If you install Singularity using RPM, you can uninstall it again in just a one command: (Just use sudo, or do this as
root)

$ sudo rpm --erase singularity

4 Chapter 1. Admin Quick Start

CHAPTER

TWO

SINGULARITY CONFIGURATION FILES

As a Singularity Administrator, you will have access to various configuration files, that will let you manage container
resources, set security restrictions and configure network options etc, when installing Singularity across the system.
All these files can be found in /usr/local/etc/singularity by default (though its location will obviously
differ based on options passed during the installation). This page will describe the following configuration files and
the various parameters contained by them. They are usually self documenting but here are several things to pay special
attention to:

2.1 singularity.conf

Most of the configuration options are set using the file singularity.conf that defines the global configuration
for Singularity across the entire system. Using this file, system administrators can have direct say as to what functions
the users can utilize. As a security measure, it must be owned by root and must not be writable by users or Singularity
will refuse to run.

The following are some of the configurable options:

ALLOW SETUID: To use containers, your users will have to have access to some privileged system calls. One way
singularity achieves this is by using binaries with the setuid bit enabled. This variable lets you enable/disable users
ability to utilize these binaries within Singularity. By default, it is set to “Yes”, but when disabled, various Singularity
features will not function (e.g. mounting of the Singularity image file format).

USER BIND CONTROL: This allows admins to enable/disable users to define bind points at runtime. By Default, its
“YES”, which means users can specify bind points, scratch and tmp locations.

BIND PATH: Used for setting of automatic bind points entries. You can define a list of files/directories that should be
made available from within the container. If the file exists within the container on which to attach to use the path like:

bind path = /etc/localtime

You can specify different source and destination locations using:

bind path = /etc/singularity/default-nsswitch.conf:/etc/nsswitch.conf

MOUNT DEV: Should be set to “YES”, if you want to automatically bind mount /dev within the container. If set to
‘minimal’, then only ‘null’, ‘zero’, ‘random’, ‘urandom’, and ‘shm’ will be included.

MOUNT HOME: To automatically determine the calling of user’s home directory and attempt to mount it’s base path
into the container.

2.1.1 Limiting containers

There are several ways in which you can limit the running of containers in your system:

5

Singularity Container Documentation, Release 3.0

LIMIT CONTAINER OWNERS: Only allow containers to be used that are owned by a given user.

LIMIT CONTAINER GROUPS: Only allow containers to be used that are owned by a given group.

LIMIT CONTAINER PATHS: Only allow containers to be used that are located within an allowed path
prefix.

Note: These features will only apply when Singularity is running in SUID mode and the user is non-root. By default
they all are set to NULL.

The singularity.conf file is well documented and most information can be gleaned by consulting it directly.

2.2 cgroups.toml

Cgroups or Control groups let you implement metering and limiting on the resources used by processes. You can limit
memory, CPU. You can block IO, network IO, set SEL permissions for device nodes etc.

Note: The --apply-cgroups option can only be used with root privileges.

2.2.1 Examples

When you are limiting resources, apply the settings in the TOML file by using the path as an argument to the
--apply-cgroups option like so:

$ sudo singularity shell --apply-cgroups /path/to/cgroups.toml my_container.sif

2.2.1.1 Limiting memory

To limit the amount of memory that your container uses to 500MB (524288000 bytes):

[memory]
limit = 524288000

Start your container like so:

$ sudo singularity instance start --apply-cgroups path/to/cgroups.toml my_container.
→˓sif instance1

After that, you can verify that the container is only using 500MB of memory. (This example assumes that instance1
is the only running instance.)

$ cat /sys/fs/cgroup/memory/singularity/*/memory.limit_in_bytes
524288000

Do not forget to stop your instances after configuring the options.

Similarly, the remaining examples can be tested by starting instances and examining the contents of the appropriate
subdirectories of /sys/fs/cgroup/.

6 Chapter 2. Singularity Configuration Files

Singularity Container Documentation, Release 3.0

2.2.1.2 Limiting CPU

Limit CPU resources using one of the following strategies. The cpu section of the configuration file can limit memory
with the following:

shares

This corresponds to a ratio versus other cgroups with cpu shares. Usually the default value is 1024. That means if
you want to allow to use 50% of a single CPU, you will set 512 as value.

[cpu]
shares = 512

A cgroup can get more than its share of CPU if there are enough idle CPU cycles available in the system, due to the
work conserving nature of the scheduler, so a contained process can consume all CPU cycles even with a ratio of 50%.
The ratio is only applied when two or more processes conflicts with their needs of CPU cycles.

quota/period

You can enforce hard limits on the CPU cycles a cgroup can consume, so contained processes can’t use more than the
amount of CPU time set for the cgroup. quota allows you to configure the amount of CPU time that a cgroup can
use per period. The default is 100ms (100000us). So if you want to limit amount of CPU time to 20ms during period
of 100ms:

[cpu]
period = 100000
quota = 20000

cpus/mems

You can also restrict access to specific CPUs and associated memory nodes by using cpus/mems fields:

[cpu]
cpus = "0-1"
mems = "0-1"

Where container has limited access to CPU 0 and CPU 1.

Note: It’s important to set identical values for both cpus and mems.

2.2.1.3 Limiting IO

You can limit and monitor access to I/O for block devices. Use the [blockIO] section of the configuration file to do
this like so:

[blockIO]
weight = 1000
leafWeight = 1000

weight and leafWeight accept values between 10 and 1000.

weight is the default weight of the group on all the devices until and unless overridden by a per device rule.

leafWeight relates to weight for the purpose of deciding how heavily to weigh tasks in the given cgroup while
competing with the cgroup’s child cgroups.

To override weight/leafWeight for /dev/loop0 and /dev/loop1 block devices you would do something
like this:

2.2. cgroups.toml 7

Singularity Container Documentation, Release 3.0

[blockIO]
[[blockIO.weightDevice]]

major = 7
minor = 0
weight = 100
leafWeight = 50

[[blockIO.weightDevice]]
major = 7
minor = 1
weight = 100
leafWeight = 50

You could limit the IO read/write rate to 16MB per second for the /dev/loop0 block device with the following
configuration. The rate is specified in bytes per second.

[blockIO]
[[blockIO.throttleReadBpsDevice]]

major = 7
minor = 0
rate = 16777216

[[blockIO.throttleWriteBpsDevice]]
major = 7
minor = 0
rate = 16777216

2.3 ecl.toml

The execution control list is defined here. You can authorize the containers by validating both the location of the SIF
file in the file system and by checking against a list of signing entities.

[[execgroup]]
tagname = "group2"
mode = "whitelist"
dirpath = "/tmp/containers"
keyfp = ["7064B1D6EFF01B1262FED3F03581D99FE87EAFD1"]

Only the containers running from and signed with above-mentioned path and keys will be authorized to run.

Three possible list modes you can choose from:

Whitestrict: The SIF must be signed by ALL of the keys mentioned.

Whitelist: As long as the SIF is signed by one or more of the keys, the container is allowed to run.

Blacklist: Only the containers whose keys are not mentioned in the group are allowed to run.

2.4 nvliblist.conf

When a container includes a GPU enabled application and libraries, Singularity (with the --nv option) can properly
inject the required Nvidia GPU driver libraries into the container, to match the host’s kernel. This config file is the
place where it searches for NVIDIA libraries in your host system. However, nvliblist.conf will be ignored in
case of having nvidia-container-cli installed, which will be used to locate any nvidia libraries and binaries on the host
system.

For GPU and CUDA support –nv option works like:

8 Chapter 2. Singularity Configuration Files

https://github.com/NVIDIA/libnvidia-container

Singularity Container Documentation, Release 3.0

$ singularity exec --nv ubuntu.sif gpu_program.exec
$ singularity run --nv docker://tensorflow/tensorflow:gpu_latest

You can also mention libraries/binaries and they will be mounted into the container when the --nv option is passed.

2.5 capability.json

Singularity provides full support for granting and revoking Linux capabilities on a user or group basis. By default,
all Linux capabilities are dropped when a user enters the container system. When you decide to add/revoke some
capabilities, you can do so using the Singularity capability options: Add, Drop and List.

For example, if you do:

$ sudo singularity capability add --user david CAP_SYS_RAWIO

You’ve let the user David to perform I/O port operations, perform a range of device-specific operations on other devices
etc. To perform the same for a group of users do:

$ sudo singularity capability add --group mygroup audit_write

Use drop in the same format for revoking their capabilities.

To see a list of all users and their capabilities, simply do:

$ sudo singularity capability list --all

capability.json is the file maintained by Singularity where the capability commands create/delete entries accord-
ingly.

To know more about the capabilities you can add do:

$ singularity capability add --help

Note: The above commands can only be issued by root user(admin).

The –add-caps and related options will let the user request the capability when executing a container.

2.6 seccomp-profiles

Secure Computing (seccomp) Mode is a feature of the Linux kernel that allows an administrator to filter system calls
being made from a container. Profiles made up of allowed and restricted calls can be passed to different containers.
Seccomp provides more control than capabilities alone, giving a smaller attack surface for an attacker to work from
within a container.

You can set the default action with defaultAction for a non-listed system call. Example: SCMP_ACT_ALLOW
filter will allow all the system calls if it matches the filter rule and you can set it to SCMP_ACT_ERRNO which will
have the thread receive a return value of errno if it calls a system call that matches the filter rule. The file is formatted
in a way that it can take a list of additional system calls for different architecture and Singularity will automatically
take syscalls related to the current architecture where it’s been executed. The include/exclude-> caps section
will include/exclude the listed system calls if the user has the associated capability.

Use the --security option to invoke the container like:

2.5. capability.json 9

https://www.sylabs.io/guides/3.0/user-guide/security_options.html?highlight=seccomp#security-related-action-options

Singularity Container Documentation, Release 3.0

$ sudo singularity shell --security seccomp:/home/david/my.json my_container.sif

For more insight into security options, network options, cgroups, capabilities, etc, please check the Userdocs and it’s
Appendix.

10 Chapter 2. Singularity Configuration Files

https://www.sylabs.io/guides/3.0/user-guide/
https://www.sylabs.io/guides/3.0/user-guide/appendix.html

	Admin Quick Start
	Installation
	Install Dependencies
	Download and Build the RPM
	Setting localstatedir

	Configuration
	Singularity Architecture
	Singularity Security
	Security of the Container Runtime
	Security of the Container Itself
	Administrator Control of Users’ Containers

	Updating Singularity
	Uninstalling Singularity

	Singularity Configuration Files
	singularity.conf
	Limiting containers

	cgroups.toml
	Examples
	Limiting memory
	Limiting CPU
	Limiting IO

	ecl.toml
	nvliblist.conf
	capability.json
	seccomp-profiles

